Bachelor's Degree in Engineering | IOE "Syllabus of Engineering Mathematics II | Sub. Code: SH 451 | BCT
Check and download syllabus of Engineering Mathematics II - Subject code: SH 451 | BCT | IOE | TU

Check All Syllabus Here:
Syllabus Of Bachelor's Degree Of Engineering (B.E.) :: IOE | TU
Download PDF File | Syllabus of Engineering Mathematics II (BCT) | Subject Code: SH 451 | IOE
Engineering Mathematics II (SH 451)
First Year First Part (Year:I, Part:II)
Lecture: 3
Tutorial: 2
Practical: 0

Course Objectives:
To develop the skill of solving differential equations and to provide knowledge of vector algebra and calculus. To make students familiar with calculus of several variables and infinite series.

1. Calculus of Two or More Variables (6 hours)
  • 1.1 Introduction: limit and continuity
  • 1.2 Partial derivatives
  • 1.2.1 Homogeneous function, Euler's theorem for the function of two and three variables
  • 1.2.2 Total derivatives
  • 1.3 Extreme of functions of two and three variables; Lagrange's Multiplier


2. Multiple Integrals (6 hours)
  • 2.1 lntroduction
  • 2.2 Double integrals in Cartesian and polar form; change of order of integration
  • 2.3 Triple integrals in Cartesian, cylindrical and spherical coordinates;
  • 2.4 Area and volume by double and triple integrals

3. Three Dimensional Solid Geometry (11 hours)
  • 3.1 The straight line; Symmetric and general form
  • 3.2 Coplanar lines
  • 3.3 Shortest distance
  • 3.4 Sphere
  • 3.5 Plane Section of a sphere by planes
  • 3.6 Tangent Planes and lines to the spheres
  • 3.7 Right circular cone
  • 3.8 Right circular cylinder

4. Solution of Differential Equations in Series and Special Functions (9 hours)
  • 4.1 Solution of differential equation by power series method
  • 4.2 Legendre'sequation
  • 4.3 Legendre polynomial function; Properties and applications.
  • 4.4 Bessel's equation
  • 4.5 Bessel's function of first and second kind. Properties and applications

5. Vector Algebra and Calculus (8 hours)
  • 5.1 Introduction
  • 5.2 Two and three dimensional vectors
  • 5.3 Scalar products and vector products
  • 5.4 Reciprocal System of vectors
  • 5.5 Application of vectors: Lines and planes
  • 5.6 Scalar and vector fields
  • 5.7 Derivatives - Velocity and acceleration
  • 5.8 Directionalderivatives

6. Infinite Series (5 hours)
  • 6.1 Introduction
  • 6.2 Series with positives terms
  • 5.3 convergence and divergence
  • 6.4 Alternating series. Absolute convergence
  • 6.5 Radius and interval of convergence

Reference Books:

1. Envin Kreyszig, "Advanced Engineering Mathematics ', John Wiley and Sons Inc.
2. Thomas, Finney, "Calculus and Analytical Ceometry', Addison- Wesley
3. M. B. Singh, B. C. Bajrachrya, "Differential Calculus', Sukunda Pustak Bhandar,Nepal
4. M. B. Singh, B. C. Bajrachrya, 'A Text Book of Vectors', Sukunda Pustak
Bhandar,Nepal
5. M. B. Singh, S. P. Shrestha, "Applied Engineering Mathematics", RTU, Department of Engineering Science and Humanities.
6- G.D. Pant, C. S. Shrestha, "lntegral Calculus and Differential Equations", Sunila Prakashan, Nepal
7. Y. R. Sthapit, B. C. Bajrachrya, "A Text Book of Three Dimensional Geometry', Sukunda Pustak Bhandar,Nepal
8. Santosh Man Maskey, "Calculus', Ratna Pustak Bhandar, Nepal

0Comments

We're glad you have chosen to leave a comment. Please keep in mind that all comments are moderated according to our privacy policy, and all links are nofollow.

Do NOT use keywords in the name field. Let's have a personal and meaningful conversation.

Previous Post Next Post